Midterm Exam

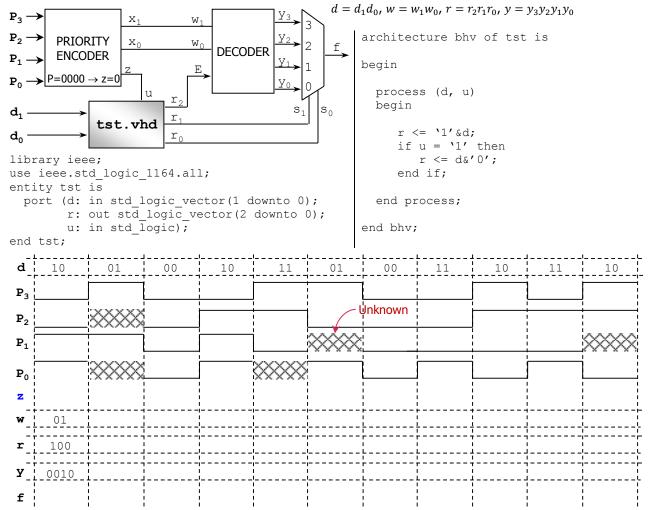
(October 19th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (20 PTS)

a) Complete the following table. The decimal numbers are unsigned: (5 pts.)

Decimal	BCD	Binary	Reflective Gray Code
37			
			101011
	000100101000		


b) Complete the following table. The decimal numbers are signed. Use the fewest number of bits in each case: (12 pts.)

REPRESENTATION				
Decimal	Sign-and-magnitude	1's complement	2's complement	
	110001			
			1000000	
-32				
			101000	
			0101001	
		1011011		

c) Convert the following decimal numbers to their 2's complement representations. (3 pts) \checkmark -17.125 \checkmark 32.375

PROBLEM 2 (15 PTS)

• Complete the timing diagram of the following circuit. The VHDL code (tst.vhd) corresponds to the shaded circuit.

0101

0110

PROBLEM 3 (8 PTS)

Complete the timing diagram (signals DO and DATA) of the following circuit. The 4-bit binary to gray decoder treats input data as unsigned numbers.

DE

DATA

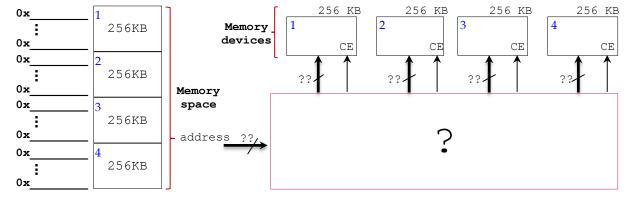
OIII

100

1010

PROBLEM 4 (12 PTS)

A microprocessor has a memory space of 1 MB. Each memory address occupies one byte. 1KB = 2¹⁰ bytes, 1MB = 2²⁰ bytes, 1GB = 2³⁰ bytes. We want to connect four 256 KB memory chips to this microprocessor.


1111

1110

√ What is the address bus size (number of bits of the address) of the microprocessor? (1 pt).

1011

- ✓ For a memory chip of 256 KB, how many bits do we require to address 256 KB of memory? (1 pt).
- Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips in the figure. (4 pts).
- ✓ Sketch the circuit that: i) addresses the memory chips, and ii) enables only one memory chip (via CE: chip enable) when the address falls in the corresponding range. Example: if address=0x5FFFF, → only memory chip 2 is enabled (CE=1). If address=0xD0123, → only memory chip 4 is enabled.

PROBLEM 5 (17 PTS)

- a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher byte. (6 pts) \checkmark 17 + 50
- b) Perform the following operations, where numbers are represented in 2's complement. Indicate every carry from c_0 to c_n . For each case, use the fewest number of bits to represent the summands and the result so that overflow is avoided. (8 pts) \checkmark -36 + 50
- c) Perform binary multiplication of the following numbers that are represented in 2's complement arithmetic. (3 pts)

PROBLEM 6 (10 PTS)

Given two 4-bit <u>unsigned</u> numbers A, B, sketch the circuit that computes |A-2B|. For example: A=1010, $B=1110 \rightarrow |A-2B| = |10-2 \times 14| = 18$. You can only use full adders and logic gates. Your circuit must avoid overflow: design your circuit so that the result and intermediate operations have the proper number of bits.

PROBLEM 7 (18 PTS)

- Sketch the circuit that implements the following Boolean function: $f(a,b,c,d) = (a \oplus \overline{b})(c \oplus d)$
 - ✓ Using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed). (12 pts)
 - ✓ Using two 3-to-1 LUTs and a 2-to-1 MUX. Specify the contents of each of the 3-to-1 LUTs. (6 pts)